Masters of Computer Science

Project Report

DeMemory

Simulation Tool for Multi-Level Memory System
using Aging Algorithm

Project Supervisor: Dr. Leonid Barenboim

Gal Oren
ID: 203127261
Mobile: 050-623-9129

Galoren.com @gmail.com
Yigal Alon 164/8, Tel Aviv

Masters of Computer Science Project Report
Department of Computer Science
The Open University of Israel
September 2015

Table of Contents

Background
Basic Paging Mechanism
Paging in Other Computer Science Fields
Paging Algorithms Evolution
The Main Evolution (1960 - 1970)
The Best Possible Page Replacement Algorithm
The Not Recently Used (NRU) Page Replacement Algorithm

The First-In-First-Out (FIFO) with Second-Chance and Aging

Page Replacement Algorithm

The Least Recently Used (LRU) and NFU (Not Frequently Used)

Page Replacement Algorithm
The Recent Evolution (2000 - Present)
The Adaptive Replacement Cache (ARC) Page Replacement Algorithm

The CLOCK with Adaptive Replacement (CAR)

Page Replacement Algorithm

The Token-ordered LRU Page Replacement Algorithm
The CLOCK-Pro Page Replacement Algorithm
Summery
References

Acknowledgements

11

13

14

15

18

21

22

Background
Basic Paging Mechanism

A page fault is a type of interrupt, called trap, raised by the computer
hardware when a running program accesses a memory page that is mapped into
the virtual address space, but not actually loaded into main memory. It is well
known [1] [2] [3] that when a page fault occurs, the operating system has to
choose a page to remove from memory to make room for the page that has to
be brought in. If the page to be removed has been modified while in memory, it
must be rewritten to the disk to bring the disk copy up to date. If, however, the
page has not been changed, the disk copy is already up to date, so no rewrite is
needed. The page to be read in just overwrites the page being evicted. While it
would be possible to pick a random page to evict at each page fault, system
performance would be much better if a page that is not heavily used is chosen.
If a heavily used page is removed, it will probably have to be brought back in
quickly, resulting in extra overhead.

The LRU and NFU Page Replacement Algorithms

A good approximation to the optimal algorithm is based on the observation
that pages that have been heavily used in the last few instructions will probably
be heavily used again in the next few. Conversely, pages that have not been
used for ages will probably remain unused for a long time. This idea suggests a
realizable algorithm: when a page fault occurs, throw out the page that has been
unused for the longest time. This strategy is called LRU (Least Recently
Used) Paging.

Although LRU is theoretically realizable, it is not cheap. To fully
implement LRU, it is necessary to maintain a linked list of all pages in memory,
with the most recently used page at the front and the least recently used page at
the rear. The difficulty is that the list must be updated on every memory

reference. Finding a page in the list, deleting it, and then moving it to the front
3

is a very time consuming operation, even in hardware (assuming that such

hardware could be built).

However, there are other ways to implement LRU with special hardware:

l.

The simplest method requires equipping the hardware with a counter
that is automatically incremented after each instruction. Furthermore,
each page table entry must also have a field large enough to contain the
counter. After each memory reference, the current value of the counter
is stored in the page table entry for the page just referenced. When a
page fault occurs, the operating system examines all the counters in the
page table to find the lowest one. That page is the least recently used.

The more sophisticated and known method suggest that for a machine
with n page frames, the LRU hardware can maintain a matrix of n x n
bits, initially all zero. Whenever page frame k is referenced, the
hardware first sets all the bits of row & to 1, then sets all the bits of
column £ to 0. At any instant, the row whose binary value is lowest is
the least recently used, the row whose value is next lowest is next least

recently used, and so forth.

Although both of the previous two LRU algorithms are realizable in

principle, few, if any, machines have this hardware, so they are of little use to

the operating system designer who is making a system for a machine that does

not have this hardware. Instead, a solution that can be implemented in software

is needed. One possibility is called the NFU (Not Frequently Used) algorithm.

It requires a software counter associated with each page, initially zero. At each

clock interrupt, the operating system scans all the pages in memory. For each

page, the R bit, which is 0 or 1, is added to the counter. In effect, the counters

are an attempt to keep track of how often each page has been referenced. When

a page fault occurs, the page with the lowest counter is chosen for replacement.

The main problem with NFU is that it never forgets anything, which
consequently can cause the operating system to remove useful pages instead of
pages no longer in use. Fortunately, a small modification to NFU makes it able
to simulate LRU quite well. The modification has two parts. First, the counters
are each shifted right 1 bit before the R bit is added in. Second, the R bit is
added to the leftmost, rather than the rightmost bit. This modified version of the

algorithm known as Aging algorithm.

The Aging Page Replacement Algorithm

The Aging algorithm is a descendant of the NFU algorithm, with
modifications to make it aware of the time span of use. Instead of just
incrementing the counters of pages referenced, putting equal emphasis on page
references regardless of the time, the modification has two parts: First, the
counters are each shifted right 1 bit before the R bit is added in. Second, the R
bit is added to the leftmost, rather than the rightmost bit.

For instance, if a page has referenced bits 1,0,0,1,1,0 in the past 6 clock
ticks, 1its referenced counter will look like this: 10000000, 01000000,
00100000, 10010000, 11001000, 01100100. Hence, page references closer to
the present time have more impact than page references long ago. This ensures
that pages referenced more recently, though less frequently referenced, will
have higher priority over pages more frequently referenced in the past. Thus,
when a page needs to be swapped out, the page with the lowest counter will be

chosen.

The N-Level Aging Page Replacement Algorithm

The transition of the Aging algorithm to an N-level memory hierarchy
model can even add another level of sophistication and optimization, especially
because of the existence of a linear proportion between the degradation of the

5

referenced bits and the amount of time that a specific page was not in use. In
this hypothesis, unlike in the other N-level memory hierarchies Paging
algorithms adaptations and adjustments shown before, there is a possibility to
create a direct link between the amount of zeros at the beginning of the page
referenced bits to the level of memory that that page should be evicted to.
Based on the knowledge that the amount of zeros points on the amount of
unreferenced past clock ticks - and therefore on the page aging status - it would
be wise to evict the page straight to its proportionate level of memory. Hence,
by forming a dynamic pyramid hierarchy of both page and memory necessity it
will be achievable to get the best performances for a Paging algorithm in an N-

level memory hierarchy.
Formulation of the Aging algorithm for N-level memory hierarchy:

* Insertion of a new page:
© Set memory levels to N (ML = N).
o Set memory level to the highst (L =1).
o Call to the page.
o If the page exists:
= Check if placing in the L-level of memory is possible.
= Jfplacemt possibe:
* Place page at the L-level of memory.
* Return True.
= FElse If placement impossible:
* Find the page with the lowest referenced counter:

© Remove page with the lowest referenced
counter.

© Do Insertion of the page with the lowest referenced

counter to the proportionate level of memory based on
the amount of the zeros at the beginning of the
page referenced bits. (L=1 ZEROS_BEGINING / |

6

(ALL_REFERENCED_BITS / ML)II)
upwards

o

Place the page at the L-level of memory.

© Return True.

o Else If page is not exists:

= Return False.

Call to a page:

o

Calculate the addressing of the page in the N-levels of memory.
o [fpage found:

= Return Real Addressing.

(o]

Else If page was not found:
= Return NULL.

Remove of a specific page:

o Store the page in a temporary storage.

o}

Free the addressing of the page.

© Return the page form the temporary storage.

Update of an exsiting page (by the OS):
o JfRead/Write action performed on the page:
= SetRbitto1 (R=1).

o [f clock interrupt:

Right Shift 1 bit to all of the pages counters.

= Add the R bit to the leftmost bit of all of the pages counters.

The DeMemory Package
File System

The DeMemory simulation contains multiply sections which requires different
files and directories to operate. As shown in Fig. 1, all of those files and

directories placed in the dememory package.

@h-MacBook-Pro-s1-Gal:~/Desktop/THESIS/dememory$ ls -lah
total 1624
drwxr-xr-x@ 24 galoren staff 816B 12:26 24 1) .

drwxr-xr-x 5 galoren staff 1708 15:37 21) ..

-rw-r--r-—@ 1 galoren staff 8.0K 11:23 24 ;1 .DS_Store 1
drwxr-xr-x 13 galoren staff 442B 12:26 24 1) .git

-rwxr-xr-x@ 1 galoren staff 8B 2015 16 'Nn .gitignore

drwxr-xr-x 9 galoren staff 306B 12:26 24 1) .idea

-rw-r--r-- 1 galoren staff 114B 23:09 23 111 .~lock.DeMemory.do :Z
-rw-r--r--@ 1 galoren staff 351K 23:09 23 1) DeMemory.doc

-rw-r--r-- 1 galoren staff 102K 10:40 24 11 Doxyfile 3
-rw-r--r-- 1 galoren staff 102K 22:56 23 111 Doxyfile.bak

-rwxr-xr-x@ 1 galoren staff 1.0K 15:35 21 112 LICENSE

-rw-r--r-- 1 galoren staff 40B 18:28 23 111 README.md

drwxr-xr-x 3 galoren staff 102B 10:40 24 1) def ‘1
-rwxr-xr-x 1 galoren staff 33K 18:30 23 112 dememory

-rwxr-xr-x 1 galoren staff 61K 18:21 23 211 dememory.c

-rw-r--r-— 1 galoren staff 9.4K 18:30 23 1) dememory.log

drwxr-xr-x 11 galoren staff 374B 10:40 24 11 dochook

-rw-r--r-- 1 galoren staff 102K 10:37 24 112 doxygen.file _
drwxr-xr-x 53 galoren staff 1.8K 10:40 24 m) htnl 2 OUtput
drwxr-xr-x 10 galoren staff 340B 10:40 24 1) latex

-rwxr-xr-x@ 1 galoren staff 308B 15:36 21 1) makefile

drwxr-xr-x 3 galoren staff 102B 10:40 24 1) man (3

drwxr-xr-x 3 galoren staff 102B 10:40 24 1) rtf
-rwxr-xr-x 1 galoren staff 769B 22:26 21 112 runner.py

Fig. 1: The DeMemory file system

The usage of the files and directories is based on six different groups of files
and directories, and it is differentiate as following (base on the six grouping

forms in Fig 1.) :

1) GIT: Git (git-scm.com) is a free and open source distributed version
control system designed to handle everything from small to very large
projects with speed and efficiency. Git is easy to learn and has a tiny
footprint with lightning fast performance. It outclasses SCM tools like
Subversion, CVS, Perforce, and ClearCase with features like cheap
local branching, convenient staging areas, and multiple workflows. The
DeMemory package is communicating via this Git repository to an
online secure repository named BitBucket (bitbucket.org). In this way
there is an option to securely locate the package online and also share it

with the scientific community (Fig. 2).

2) Doxygen: Doxygen (doxygen.org) is the de facto standard tool for
generating documentation from annotated C++ sources, but it also
supports other popular programming languages such as C. Doxygen can
generate an on-line documentation browser (in HTML) and/or an off-
line reference manual (in LaTeX) from a set of documented source files.
There is also support for generating output in RTF (MS-Word),
PostScript, hyperlinked PDF, compressed HTML, and Unix man pages
(as shown in section 2.1 in Fig. 1). The documentation is extracted
directly from the sources, which makes it much easier to keep the
documentation consistent with the source code. The DeMemory
simulation code is completely documented with Doxygen, and the
outcome of this documentation is presented in the code section of this
file.

3) License: Includes the license usage of this package and the copyright.

4) Code: The DeMemory simulation code and binaries, including the log
file of the simulation, which contains the summery results of the
simulation, and its permanent part of the code because its always

appended and not erased.

5) Runner: A Python script which runs the DeMemory simulation with

different arguments for multiply times. Good for benchmarking mainly.

©Bitbucket Dashboard ~ Teams ~ Repositories ~ Snippets ~ Create ~

¢ galoren SoUrce

& dememory
ACTIONS U master + &, dememory / + New file
&, Clone

idk
1® Create branch - den
A Croote pull request LICENSE 1.0KB 3 days ago Start repo of DeMemory.
3 Create pull reque:
= e README.md 418 3 days ago Start repo of DeMemory.
< Compare
= dememory 327KB 2 days ago Added benchmarking, and optimizations.
Fork

NAVIGATION ”
d

morylog 9.1KB 2 days ago Added benchmarking, and optimizations.

Overview

(
(
(
@ dememory.c 50.7 KB 2days ago Added benchmarking, and optimizations.
(
@ makefile 3088 3 days ago Start repo of DeMemory.

(

Source
runner.py 7698 2 days ago Added benchmarking, and optimizations.

Commits

M - i | 1
ranches DeMemory - simulation by Gal Oren (2015)
Pull requests

Issues

Wiki

{00PpPvTo@E

Downloads

YAtlassian

Fig. 2: The DeMemory file system on Bitbucket repository

9

Usage
In Linux/UNIX systems, under GCC compiler, and using the Makefile

platform, the usage will be in the following form:

>> make clean

>> make

>> ./dememory [algorithm] [num_frames] [show_process]

[debug] [ref] [page_calls]

algorithm - page algorithm to use {A = Aging, B = N-Level Aging}
num_frames - number of page frames {int > 0}

show_process - print page table after each ref is processed {1 or 0}
debug - verbose debugging output {1 or 0}

ref - page ref upper bound {ALL}

page_calls - max_page_calls {int > 0}

Because of a heavy usage of the memory system, it is highly recommended to
clean the Cache after each run of the simulation. Under Mac/Linux systems it is

can be done quickly using the Purge command from the Terminal under

Administrator permissions.
>> sudo purge
Example of Usage
>> ./dememory B 10 1 0 100 1000
Run the simulation of the 3-Level Aging algorithm, with 10 memory frames,

printing of the page table during the process, without showing debug verbose,

using 100 different page references and repetition of the procedure for 1000

times.

10

Analysis of Output

The output version as shown in Fig. 1 is based on a simulation of a 3 level
memory hierarchy with 10 frames for each level, when there are 100 references
and the simulations run for 5 times. In this case there is a complete printing -
both debug and show process options were on. Fig. 3 presents only the last

steps of the simulation.

>> ./dememory B 10 1 1 100 5

AGING_N Algorithm
LEVEL: [@] - Frames in Mem: 10, Refs to Mem: 100, Hits: @, Misses: 4, Hit Ratio: 0.000000, [Max Page calls: 5]
9

Frame # : 0 1 2 3 4 5 6 7 8

Page Ref : 7 73 72 23 _ _ _ _ _ _
Extra : 1250000 2500000 5000000 0 0 0] [} 0]
Time i 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # : 0 1 2 3 4 5 6 7 8 9
Page Ref : _ _ _ _ _ _ _ _ _ _
Extra : 0 0 0 0 0 0] [} 0 [}
Time 1 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # : 0 1 2 3 4 5 6 7 8 9
Page Ref : _ _ _ _ _ _ _ _ _ _
Extra : 0 0 0] 0 0 0] 0]
Time 1 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258

>>>>>>>>>>>>>>> Current Level: [0]

framep->index: [0], framep->extra:[625000], count_zeros_before: [4]
*kxx calculate_direct_level xkxx: 1

*xkk [00001000] xxxk

INDEX: [@]

INDEXES [@]: [0]

sokkx REMOVED @ [1]kkokok

INSERT-IN ::: framep->index:[@], framep->page: (7]

INSERT ::: framep->index:[@], framep->page:[7]

sk INSERT @ [1]skkk

framep->index: [1], framep->extra:[1250000], count_zeros_before: [3]
framep->index: [2], framep->extra:[2500000], count_zeros_before:[2]
framep->index: [3], framep->extra:[5000000], count_zeros_before:[1]
>>>>>>>>>>>>>>> Current Level: [1]

framep->index: [0], framep->extra:[625000], count_zeros_before: [5]

>>>>>>>>>>>>>>> Current Level: [2]

AGING_N Algorithm

LEVEL: [@] - Frames in Mem: 1@, Refs to Mem: 100, Hits: @, Misses: 5, Hit Ratio: 0.000000, [Max Page calls: 5]
Frame # 1 5 6 7 8 9

Page Ref : _ 73 72 23 65 _

Extra : 0 1250000 2500000 5000000

Time : 0 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # :] 1 2 3 4 5 6 7 8 9
Page Ref : 7

Extra : 625000

Time 1 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # 0 1 2 3 4 5 6 7 8 9
Page Ref : _ _ _ _ _ _ _ _ _ _
Extra : [} 0 0 [} 0 0 [} 0 0 [}
Time 1 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258

AGING_N Algorithm
LEVEL: [@] - Frames in Mem: 10, Refs to Mem: 100, Hits: @, Misses: 5, Hit Ratio: 0.000000, [Max Page calls: 5]
Elapsed: 0.000706 seconds

Fig. 3: Example of Output in a 3-Level Memory Hierarchy

11

As shown in Fig. 3, at the beginning the simulation prints the current status of
the pages in all of the memory levels. After the N-level Aging algorithm was
run on the first level of the memory (Current Level: [0]), it was discovered that
the first page (index = 0) was not referenced for 4 cycles (extra = 625000,
count_zeros_before = 4) and the algorithm calculated that it should be evict to a
lower level of memory. Therefore, the page is been successfully evicted from
the first level of memory (level = 0 , REMOVED: [1]) and successfully
inserted into the second level of memory (level = 1, INSERT: [1]).

Afterwords, the algorithm is checking the second and the third level of memory
to figure if there is a need to upgrade or downgrade any of its files like its been
done in the first level, but concludes there is nothing to do. At the end of the
algorithm run the simulation re-print the status of the memory and there is an
option to see that the actions were actually took place.

At the end of the output the program prints the status and the statistics of the
simulation so far (and also when the simulation ends), including the number of
hits and misses, the total hit ratio and the time elapsed ever since the programm
started. Those statistics constantly append into a log file at the local directory

(dememory.log, Fig. 4), and it is possible to examine it using:

>> less dememory.log

[BN dememory — less — 134x48
less bash bash

1-Level Aging Algorithm:

LEVEL: [@] - Frames in Mem: 10, Refs to Mem: 10, Hits: 990, Misses: 10, Hit Ratio: 0.990000, [Max Page calls: 1000]
Elapsed: 0.022712 seconds

1-Level Aging Algorithm:

LEVEL: [@] - Frames in Mem: 10, Refs to Mem: 100, Hits: 107, Misses: 893, Hit Ratio: 0.107000, [Max Page calls: 1000]
Elapsed: 0.022973 seconds

N-Level Aging Algorithm:

LEVEL: [@] - Frames in Mem: 10, Refs to Mem: 10, Hits: 839, Misses: 161, Hit Ratio: 0.839000, [Max Page calls: 1000]
Elapsed: 0.124501 seconds

N-Level Aging Algorithm:

LEVEL: [@] - Frames in Mem: 10, Refs to Mem: 100, Hits: 301, Misses: 699, Hit Ratio: ©.301000, [Max Page calls: 1000]
Elapsed: 0.126264 seconds

N-Level Aging Algorithm:

LEVEL: [@] - Frames in Mem: 10, Refs to Mem: 100, Hits: 301, Misses: 699, Hit Ratio: ©.301000, [Max Page calls: 1000]
Elapsed: 0.118668 seconds

Fig. 4: Example of Output to the log file dememory.log

When there is a need to follow several runs of the simulations it is possible to

see the results appended in live streaming using:

>> tail -f dememory.log

12

The DeMemory Code

The DeMemory code documentation is presented as processed directly from the

code Doxygen comments, and it is available in LaTeX, rtf and HTML as well.

dememory.c File Reference

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <math.h>

#include <sys/queue.h>

Classes

struct Frame
struct Algorithm_Data
struct Algorithm

Macros

#define amount_of memory levels 3
#define LEVEL A 0O
#define LEVEL B 1
#define LEVEL C 2

Typedefs

typedef struct Frame Frame

Functions

LIST_HEAD (Page_Ref_List, Page Ref)

int init ()
void gen_page refs ()

Page Ref” gen_ref ()

Algorithm_Data * create_algo_data_store ()
Frame * create_empty frame (int index)

int cleanup ()
int event_loop ()
int page (int page_ref)
int get ref ()

int add_victim (struct Frame_List *victim_list, struct Frame *frame, int level)

int print_help (const char *binary)
int print_list (struct Frame *head, const char *index_label, const char *value_label, int

13

level)
int print_stats (Algorithm algo)
int print_summary (Algorithm algo)
int delete frame from_list (Algorithm_ Data *data, int index, int level)
int insert frame into list (Algorithm_Data *data, struct Frame *framep_in, int level)
int calculate direct level (struct Frame *framep)
int AGING (Algorithm_Data *data)
int AGING_N (Algorithm_Data *data)

int main (int argc, char *argv[])

Variables

Page Ref
int num_frames
int page_ref upper_bound
int max_page calls
int debug=0
int printrefs =0
Algorithm algos [2]
int counter=0
int last_page ref = -1
int last_page ref2 =-1
size_t num_algos =2
int* optimum_find_test
int num refs=0
FILE * pFile
int print_count=0

double time_spent_global =0

Macro Definition Documentation

#define amount_of memory levels 3
#define LEVEL_A 0

#define LEVEL B 1

#define LEVEL_ C 2

14

Typedef Documentation

typedef struct Frame Frame

Function Documentation

int add_victim (struct Frame_List* victim_list,
struct Frame * frame,

int level

int add_victim(struct Frame_List *victim_list, struct Frame *frame)
Add victim frame evicted from page table to list of victims

Parameters
index {Frame_List} list of victims

page {Frame} page frame evicted

int AGING (Algorithm_Data * data)

int AGING(Algorithm_Data *data)
AGING Page Replacement Algorithm for 1-Level memory hierarchy

Parameters
*data {Algorithm_Data} struct holding algorithm data

return {int} did page fault, 0 or 1

int AGING_N (Algorithm Data * data)

int AGING_N(Algorithm_Data *data)
AGING Page Replacement Algorithm for N-Level memory hierarchy

Parameters
*data {Algorithm_Data} struct holding algorithm data

return {int} did page fault, 0 or 1

15

int calculate_direct_level (struct Frame * framep)

int calculate_direct_level(struct Frame *framep)
Calculates the direct level to map the frame based on the N-Level Aging algorithm

Parameters

page {Frame} page frame to calculate

{int} the relative deviation level

int cleanup ()

int cleanup()
Clean up memory

Returns
0

Algorithm_Data * create_algo_data store ()

Algorithm_Data* create_algo_data_store(int num_frames)
Creates an empty Algorithm_Data to init an Algorithm

Returns
{Algorithm_Data*} empty Algorithm_Data struct for an Algorithm

int delete_frame_from_list (Algorithm _Data * data,
int index,

int level

Algorithm functions
int delete_frame_from_list(Algorithm_Data *data, int index, int level)
Deletes a frame from specific memory level based on the index.

Parameters
data {Algorithm_Data} the algorithm data
index {int} index of frame

level {int} level of frame

{int} 0 or 1 base on success or failure

16

Frame * create_empty frame (int index)

Frame™ create_empty_frame(int num_frames)
Creates an empty Frame for page table list

Returns
{Frame™} empty Frame entry for page table list

int event_loop ()

Control functions
int event_loop()
page all selected algorithms with input ref

Parameters

page_ref {int} page to ref

Returns
0

void gen_page refs ()

void gen_page_refs()
Generate all page refs to use in tests

Returns
0

Page Ref * gen_ref ()

Page_ Ref* gen_ref()
generate a random page ref within bounds

Returns
{Page_Ref*}

intget ref ()

int get_ref()
get a random ref

Returns

{inty

17

intinit ()

Init/cleanup functions
intinit()
Initialize lists and variables

Returns
0

intinsert_frame_into_list (Algorithm Data * data,
struct Frame * framep _in,

int level

int insert_frame_into_list(Algorithm_Data *data, struct Frame *framep _in, int level)
Inserts a frame to specific memory level.

Parameters
data {Algorithm_Data} struct holding algorithm data
frame {Frame} the frame to insert

level {int} level of frame

{int} 0 or 1 base on success or failure

LIST HEAD (Page Ref List ,
Page_Ref
)

Data structures

int main (int argc,
char* argv[]

)

int main(int argc, char *argv[])

Parameters
argc {int} number of commandline terms eg {'./pagesim' => argc=1}

argv {char **} arguments passed in

Run algo if given correct arguments, else terminate with error

18

int page (int page ref)

int page()
page all selected algorithms with input ref

Parameters

page_ref {int} page to ref

Returns
0

int print_help (const char * binary)

Output functions
int print_help(const char *binary)

Parameters

prog_name {const char} the name of the program

Function to print results after algo is run

0

int print_list (struct Frame * head,
const char* index_label,
const char* value label,

int level

int print_list(struct Frame head, const char index_label, const char* value_label, int level)
Print list

Parameters
head {Frame} head of frame list
index_label {const char*} label for index frame field
value_label {const char*} label for value frame field

level {int} level of memory

19

int print_stats (Algorithm algo)

int print_stats(Algorithm algo)
Function to print results after algo is run

Parameters

*data {Algorithm_Data} struct holding algorithm data

int print_summary (Algorithm algo)

int print_summary(Algorithm algo)
Function to print summary report of an Algorithm

Parameters

*data {Algorithm_Data} struct holding algorithm data

Variable Documentation

Algorithm algos|[2]

Initial value:

= { {"AGING", &AGING, 0, NULL},
{"AGING_N", &AGING_N, 0, NULL}}

Array of algorithm functions that can be enabled

int counter =0

Runtime variables, don't touch

int debug =0

int last_page ref = -1

int last_page ref2 = -1

int max_page_calls

20

Generated by Mtaw

21

References

1. Andrew S. Tanenbaum ,Modern Operating Systems, Prentice Hall, 2nd
edition, 2001.

2. Abraham Silberschatz, Greg Gagne, Peter B. Galvin, Operating System
Concepts, Wiley, 8th edition, 2008.

3. Harvey M. Deitel, Paul Deitel, David R. Choffnes, Operating Systems,
Prentice Hall, 3rd edition, 2003.

4. Page Replacement Algorithm, n.d., In Wikipedia, Retrieved September
2015 from https://en.wikipedia.org/wiki/Page replacement algorithm

22

Acknowledgements

I would like to express my sincere gratitude to my scientific supervisor
over the last year, Dr. Leonid Barenboim, and to my scientific mentor over the
last three years, Dr. Lior Amar, which led me to my current achievements in the

field of computer science - in theory as well as in practice.

Also, I would like to thank my research facility and its executives for giving me
the opportunity to learn for this masters degree as a permanent part of my

professional experience.

23

